Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2315908

RESUMEN

Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.


Asunto(s)
Aptámeros de Nucleótidos , Humanos , Aptámeros de Nucleótidos/química , Proteínas de la Membrana , Técnica SELEX de Producción de Aptámeros/métodos , Ligandos , Biomarcadores
2.
J Vis Exp ; (187)2022 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2217149

RESUMEN

Virus infections have a major impact on society; most methods of detection have difficulties in determining whether a detected virus is infectious, causing delays in treatment and further spread of the virus. Developing new sensors that can inform on the infectability of clinical or environmental samples will meet this unmet challenge. However, very few methods can obtain sensing molecules that can recognize an intact infectious virus and differentiate it from the same virus that has been rendered non-infectious by disinfection methods. Here, we describe a protocol to select aptamers that can distinguish infectious viruses vs non-infectious viruses using systematic evolution of ligands by exponential enrichment (SELEX). We take advantage of two features of SELEX. First, SELEX can be tailor-made to remove competing targets, such as non-infectious viruses or other similar viruses, using counter selection. Additionally, the whole virus can be used as the target for SELEX, instead of, for example, a viral surface protein. Whole virus SELEX allows for the selection of aptamers that bind specifically to the native state of the virus, without the need to disrupt of the virus. This method thus allows recognition agents to be obtained based on functional differences in the surface of pathogens, which do not need to be known in advance.


Asunto(s)
Aptámeros de Nucleótidos , Virosis , Virus , Aptámeros de Nucleótidos/metabolismo , Humanos , Ligandos , Proteínas de la Membrana , Técnica SELEX de Producción de Aptámeros/métodos , Virus/metabolismo
3.
J Clin Lab Anal ; 36(11): e24725, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2075024

RESUMEN

It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high-specificity and high-sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer-based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX-based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Mycobacterium tuberculosis , Ácidos Nucleicos , Humanos , Técnica SELEX de Producción de Aptámeros/métodos , COVID-19/diagnóstico , Ligandos
4.
Biosensors (Basel) ; 12(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2023153

RESUMEN

Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This "smart" SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor's response. This can be explained by considering the aptamers' conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.


Asunto(s)
Compuestos de Amonio , Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Ligandos , Técnica SELEX de Producción de Aptámeros/métodos
5.
ChemMedChem ; 17(13): e202200166, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1819344

RESUMEN

Aptamers that can recognize the spike (S) protein of SARS-CoV-2 with high affinity and specificity are useful molecules towards the development of diagnostics and therapeutics to fight COVID-19. However, this S protein is constantly mutating, producing variants of concern (VoCs) that can significantly weaken the binding by aptamers initially engineered to recognize the S protein of the wildtype virus or a specific VoC. One strategy to overcome this problem is to develop universal aptamers that are insensitive to all or most of the naturally emerging mutations in the protein. We have recently demonstrated this concept by subjecting a pool of S protein-binding DNA aptamers for one-round parallel-SELEX experiments targeting 5 different S protein variants for binding-based sequence enrichment, followed by bioinformatic analysis of the enriched pools. This effort has led to the identification of a universal aptamer that recognizes 8 different variants of the spike protein with equally excellent affinity.


Asunto(s)
Aptámeros de Nucleótidos , Tratamiento Farmacológico de COVID-19 , Aptámeros de Nucleótidos/química , Humanos , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/genética
6.
Anal Biochem ; 645: 114633, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1712394

RESUMEN

The rapid spread of SARS-CoV-2 infection throughout the world led to a global public health and economic crisis triggering an urgent need for the development of low-cost vaccines, therapies and high-throughput detection assays. In this work, we used a combination of Ideal-Filter Capillary Electrophoresis SELEX (IFCE-SELEX), Next Generation Sequencing (NGS) and binding assays to isolate and validate single-stranded DNA aptamers that can specifically recognize the SARS-CoV-2 Spike glycoprotein. Two selected non-competing DNA aptamers, C7 and C9 were successfully used as sensitive and specific biological recognition elements for the development of electrochemical and fluorescent aptasensors for the SARS-CoV-2 Spike glycoprotein with detection limits of 0.07 fM and 41.87 nM, respectively.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/genética , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1664751

RESUMEN

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Asunto(s)
Anticoagulantes/farmacología , Aptámeros de Nucleótidos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor V/antagonistas & inhibidores , Factor Va/antagonistas & inhibidores , Secuencia de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Emparejamiento Base , Sitios de Unión , COVID-19/sangre , Membrana Celular/química , Membrana Celular/metabolismo , Factor V/química , Factor V/genética , Factor V/metabolismo , Factor Va/química , Factor Va/genética , Factor Va/metabolismo , Heparina de Bajo-Peso-Molecular/química , Heparina de Bajo-Peso-Molecular/metabolismo , Humanos , Sueros Inmunes/química , Sueros Inmunes/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Protaminas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato , Tratamiento Farmacológico de COVID-19
8.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1620111

RESUMEN

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus
9.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1559358

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Mutación , Pruebas de Neutralización , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Pharmacol Res ; 175: 105982, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1527828

RESUMEN

All the different coronavirus SARS-CoV-2 variants isolated so far share the same mechanism of infection mediated by the interaction of their spike (S) glycoprotein with specific residues on their cellular receptor: the angiotensin converting enzyme 2 (ACE2). Therefore, the steric hindrance on this cellular receptor created by a bulk macromolecule may represent an effective strategy for the prevention of the viral spreading and the onset of severe forms of Corona Virus disease 19 (COVID-19). Here, we applied a systematic evolution of ligands by exponential enrichment (SELEX) procedure to identify two single strand DNA molecules (aptamers) binding specifically to the region surrounding the K353, the key residue in human ACE2 interacting with the N501 amino acid of the SARS-CoV-2 S. 3D docking in silico experiments and biochemical assays demonstrated that these aptamers bind to this region, efficiently prevent the SARS-CoV-2 S/human ACE2 interaction and the viral infection in the nanomolar range, regardless of the viral variant, thus suggesting the possible clinical development of these aptamers as SARS-CoV-2 infection inhibitors. Our approach brings a significant innovation to the therapeutic paradigm of the SARS-CoV-2 pandemic by protecting the target cell instead of focusing on the virus; this is particularly attractive in light of the increasing number of viral mutants that may potentially escape the currently developed immune-mediated neutralization strategies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/enzimología , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , Técnica SELEX de Producción de Aptámeros
11.
Chem Biol Drug Des ; 99(2): 233-246, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1488186

RESUMEN

Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi.


Asunto(s)
Antivirales/administración & dosificación , Aptámeros de Nucleótidos/química , Tratamiento Farmacológico de COVID-19 , Liposomas/química , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Administración por Inhalación , Adulto , Alanina/análogos & derivados , Alanina/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , COVID-19/patología , COVID-19/virología , Línea Celular , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Dominios Proteicos/genética , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Técnica SELEX de Producción de Aptámeros , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Carga Viral/efectos de los fármacos
12.
Theranostics ; 11(18): 9133-9161, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1410987

RESUMEN

During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.


Asunto(s)
Aptámeros de Nucleótidos , Bacterias/genética , Enfermedades Transmisibles/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Virus/genética , Aptámeros de Nucleótidos/farmacología , Técnicas Biosensibles , Prueba de COVID-19/métodos , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Interacciones Huésped-Patógeno/inmunología , Humanos , Técnica SELEX de Producción de Aptámeros , Internalización del Virus
13.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1403611

RESUMEN

An aptamer is a short sequence of synthetic oligonucleotides which bind to their cognate target, specifically while maintaining similar or higher sensitivity compared to an antibody. The in-vitro selection of an aptamer, applying a conjoining approach of chemistry and molecular biology, is referred as Systematic Evolution of Ligands by Exponential enrichment (SELEX). These initial products of SELEX are further modified chemically in an attempt to make them stable in biofluid, avoiding nuclease digestion and renal clearance. While the modification is incorporated, enough care should be taken to maintain its sensitivity and specificity. These modifications and several improvisations have widened the window frame of aptamer applications that are currently not only restricted to in-vitro systems, but have also been used in molecular imaging for disease pathology and treatment. In the food industry, it has been used as sensor for detection of different diseases and fungal infections. In this review, we have discussed a brief history of its journey, along with applications where its role as a therapeutic plus diagnostic (theranostic) tool has been demonstrated. We have also highlighted the potential aptamer-mediated strategies for molecular targeting of COVID-19. Finally, the review focused on its future prospective in immunotherapy, as well as in identification of novel biomarkers in stem cells and also in single cell proteomics (scProteomics) to study intra or inter-tumor heterogeneity at the protein level. Small size, chemical synthesis, low batch variation, cost effectiveness, long shelf life and low immunogenicity provide advantages to the aptamer over the antibody. These physical and chemical properties of aptamers render them as a strong biomedical tool for theranostic purposes over the existing ones. The significance of aptamers in human health was the key finding of this review.


Asunto(s)
Aptámeros de Nucleótidos , Tratamiento Farmacológico de COVID-19 , COVID-19 , Medicina de Precisión/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/uso terapéutico , COVID-19/diagnóstico , Humanos
14.
Nucleic Acids Res ; 49(13): 7267-7279, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1298981

RESUMEN

We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19/virología , Biblioteca de Genes , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , COVID-19/diagnóstico , Colorimetría/métodos , Humanos , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros
15.
Angew Chem Int Ed Engl ; 60(18): 10279-10285, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1122115

RESUMEN

The receptor binding domain (RBD) of the spike glycoprotein of the coronavirus SARS-CoV-2 (CoV2-S) binds to the human angiotensin-converting enzyme 2 (ACE2) representing the initial contact point for leveraging the infection cascade. We used an automated selection process and identified an aptamer that specifically interacts with CoV2-S. The aptamer does not bind to the RBD of CoV2-S and does not block the interaction of CoV2-S with ACE2. Nevertheless, infection studies revealed potent and specific inhibition of pseudoviral infection by the aptamer. The present study opens up new vistas in developing SARS-CoV2 infection inhibitors, independent of blocking the ACE2 interaction of the virus, and harnesses aptamers as potential drug candidates and tools to disentangle hitherto inaccessible infection modalities, which is of particular interest in light of the increasing number of escape mutants that are currently being reported.


Asunto(s)
Antivirales/farmacología , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Aptámeros de Nucleótidos/química , Sitios de Unión/efectos de los fármacos , COVID-19/metabolismo , Descubrimiento de Drogas , Células HEK293 , Humanos , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/fisiología , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/química
16.
Biosens Bioelectron ; 180: 113112, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1116326

RESUMEN

Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Virosis/diagnóstico , Anticuerpos Antivirales/inmunología , Humanos , Técnicas Analíticas Microfluídicas , Técnica SELEX de Producción de Aptámeros
17.
Biosens Bioelectron ; 180: 113111, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1108095

RESUMEN

Significant barriers to the diagnosis of latent and acute SARS-CoV-2 infection continue to hamper population-based screening efforts required to contain the COVID-19 pandemic in the absence of widely available antiviral therapeutics or vaccines. We report an aptamer-based SARS-CoV-2 salivary antigen assay employing only low-cost reagents ($3.20/test) and an off-the-shelf glucometer. The test was engineered around a glucometer as it is quantitative, easy to use, and the most prevalent piece of diagnostic equipment globally, making the test highly scalable with an infrastructure that is already in place. Furthermore, many glucometers connect to smartphones, providing an opportunity to integrate with contact tracing apps, medical providers, and electronic health records. In clinical testing, the developed assay detected SARS-CoV-2 infection in patient saliva across a range of viral loads - as benchmarked by RT-qPCR - within 1 h, with 100% sensitivity (positive percent agreement) and distinguished infected specimens from off-target antigens in uninfected controls with 100% specificity (negative percent agreement). We propose that this approach provides an inexpensive, rapid, and accurate diagnostic for distributed screening of SARS-CoV-2 infection at scale.


Asunto(s)
Antígenos Virales/análisis , Técnicas Biosensibles/métodos , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Pruebas en el Punto de Atención , SARS-CoV-2/inmunología , Saliva/virología , Adulto , Prueba de COVID-19 , Proteínas de la Nucleocápside de Coronavirus/análisis , Femenino , Humanos , Masculino , Fosfoproteínas/análisis , SARS-CoV-2/aislamiento & purificación , Técnica SELEX de Producción de Aptámeros , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/análisis
18.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: covidwho-917003

RESUMEN

Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.


Asunto(s)
Aptámeros de Nucleótidos , Antibacterianos/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Simulación por Computador , Evolución Molecular Dirigida , Diseño de Fármacos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Organofosfatos/antagonistas & inhibidores , Organofosfatos/química , Proteínas/antagonistas & inhibidores , Proteínas/química , Técnica SELEX de Producción de Aptámeros
19.
Biosci Biotechnol Biochem ; 85(5): 1170-1174, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1010330

RESUMEN

Interleukin-6 (IL-6) binds to the IL-6 receptor (IL-6R) subunit, related to autoimmune diseases and cytokine storm in COVID-19. In this study, we performed systematic evolution of ligands by exponential enrichment and identified a novel RNA aptamer. This RNA aptamer not only bound to IL-6R with a dissociation constant of 200 n m, but also inhibited the interaction of IL-6R with IL-6.


Asunto(s)
Aptámeros de Nucleótidos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interleucina-6/antagonistas & inhibidores , Receptores de Interleucina-6/antagonistas & inhibidores , Aptámeros de Nucleótidos/química , Secuencia de Bases , COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/etiología , ADN Viral/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Técnica SELEX de Producción de Aptámeros
20.
Biochem Biophys Res Commun ; 535: 47-53, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-978223

RESUMEN

The interaction of the multifunctional cytokine interleukin (IL)-6 and its receptor (IL-6R) is involved in various diseases, including not only autoimmune diseases such as rheumatoid arthritis but also cancer and cytokine storms in coronavirus disease 2019 (COVID-19). In this study, systematic evolution of ligands by exponential enrichment (SELEX) against human IL-6R from mRNA-displayed unnatural peptide library ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid (mClPh) incorporated by genetic code expansion (sense suppression) was performed using the PURE (Protein synthesis Using Recombinant Elements) system. A novel 13-mer unnatural mClPh-cyclized peptide that binds to the extracellular domain of IL-6R was discovered from an extremely diverse random peptide library. In vitro affinity maturation of IL-6R-binding unnatural mClPh-cyclized peptide from focused libraries was performed, identifying two IL-6R-binding unnatural mClPh-cyclized peptides by next-generation sequencing. Because cyclization can increase the protease resistance of peptides, novel IL-6R-binding mClPh-cyclized peptides discovered in this study have the potential to be used for a variety of research, therapeutic, and diagnostic applications involving IL-6/IL-6R signaling.


Asunto(s)
Ácido Benzoico/química , Péptidos/química , Receptores de Interleucina-6/química , Ribosomas/química , Ciclización , Código Genético , Humanos , Biblioteca de Péptidos , ARN Mensajero , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA